Dgfem for the Numerical Solution of Compressible Flow in Time Dependent Domains and Applications to Fluid-structure Interaction

نویسندگان

  • Miloslav Feistauer
  • Jan Česenek
  • Jaromı́r Horáček
  • Václav Kučera
  • Jaroslava Prokopová
چکیده

Abstract. The paper is concerned with the simulation of inviscid and viscous compressible flow in time dependent domains. The motion of the boundary of the domain occupied by the fluid is taken into account with the aid of the ALE (Arbitrary Lagrangian-Eulerian) formulation of the Euler and Navier-Stokes equations describing compressible flow. They are discretized by the discontinuous Galerkin finite element method using piecewise polynomial discontinuous approximations. The time discretization is based on a semi-implicit linearized scheme, which leads to the solution of a linear algebraic system on each time level. Moreover, we use special treatment of boundary conditions and shock capturing, allowing the solution of flow with a wide range of Mach numbers. As a result we get an efficient and robust numerical process. The applicability of the developed method will be demonstrated by computational results obtained for compressible inviscid and viscous flow in channels with moving walls and flow induced airfoil vibrations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Solution for Gate Induced Vibration Due to Under Flow Cavitation

Among the many force s to which hydraulic structures are exposed to, the forces induced by cavitation incident are of typical hydrodynamic unknown forces. The aim of this study is to define these forces as coupled fluid-structure interaction under two dynamic effects. The first dynamic effect which incorporates facilities for dealing with cavitation fluid is based on the appearance and bursting...

متن کامل

Dgfem for Interaction of Fluids and Nonlinear Elasticity

This paper is concerned with the numerical simulation of the interaction of compressible viscous flow with elastic structures. The flow is described by the compressible Navier-Stokes equations written in the arbitrary Lagrangian-Eulerian (ALE) form. For the elastic deformation we use 2D linear elasticity and nonlinear St. Venant-Kirchhoff and neo-Hookean models. The discretization of both flow ...

متن کامل

On Numerical Solution of Compressible Flow in Time-dependent Domains

The paper deals with numerical simulation of a compressible flow in timedependent 2D domains with a special interest in medical applications to airflow in the human vocal tract. The mathematical model of this process is described by the compressible Navier-Stokes equations. For the treatment of the time-dependent domain, the arbitrary Lagrangian-Eulerian (ALE) method is used. The discontinuous ...

متن کامل

Solution of Thermo-Fluid problems in Bounded Domains via the Numerical Panel Method

The classical panel method has been extensively used in external aerodynamics to calculate ideal flow fields around moving vehicles or stationary structures in unbounded domains. However, the panel method, as a somewhat simpler implementation of the boundary element method, has rarely been employed to solve problems in closed complex domains. This paper aims at filling this gap and discusses th...

متن کامل

Presenting a Modified SPH Algorithm for Numerical Studies of Fluid-Structure Interaction Problems

A modified Smoothed Particle Hydrodynamics (SPH) method is proposed for fluid-structure interaction (FSI) problems especially, in cases which FSI is combined with solid-rigid contacts. In current work, the modification of the utilized SPH concerns on removing the artificial viscosities and the artificial stresses (which such terms are commonly used to eliminate the effects of tensile and numeri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010